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Abstract
The two-soliton solution of the KdV equation is known not to degenerate into
a solution describing resonant triads of solitons in 1 + 1 dimensions. However,
we show that two integrable coupled-KdV systems of the Drinfeld–Sokolov
class possess solutions which may degenerate into resonant triads. These
solutions are associated with a resonance relation which generalizes the usual
one previously considered by Hirota and Ito.

PACS numbers: 02.30.Jr, 05.45.Yv

1. Introduction

Solitons are often known to be stable and to interact elastically, such that they emerge from
the interaction without changing their forms. However, when a ‘resonant’ relation between
the parameters of the soliton solution is satisfied, integrable PDEs may describe structural
instabilities such as the decay of a solitary wave into two new solitary waves in a finite time
or the fusion of two waves into a single one. The existence of such a triad results from the
degeneracy of the two-soliton solution when the coupling factor becomes zero or infinite. It is
well known that in the KdV case, this coupling factor or its inverse never vanishes. However,
resonant interactions in 1 + 1 dimensions may exist and have been mostly discussed [1–5] for
soliton equations possessing solitary waves of the KdV type

u = ∂2
x log(1 + eθ ) � sech2 θ

2
(1)

or of the form of a kink [6, 7] on a nonvanishing background.
The integrable PDEs of fifth order such as Sawada–Kotera (SK) and Kaup–Kupershmidt

(KK) have attracted special attention since the discovery [8] of their link with some integrable
cases of the cubic Hénon–Heiles Hamiltonian, and also for their ability to describe resonant
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interactions of solitons. It is known that the SK and KK equations possess soliton solutions
describing the elastic collision of sech2-type waves for SK and of a more general type for KK

u = ∂2
x log(1 + eθ + e2θ ). (2)

The soliton solution of SK, built on a nonvanishing background, is known to degenerate when
the coupling factor (or its inverse) becomes zero into a regular solution describing inelastic
collisions of solitons. However, as shown in section 2, the same conditions on the coupling
factor for KK, implies that the degenerate two-soliton becomes singular for finite values of x
and t.

The goal of the present paper is to investigate the behaviour of the two-soliton solution of
other integrable PDEs possessing solitary waves of both types (1) and (2), in order to prove
the existence of resonant triads involving solitary waves of the KdV and KK type. In [9],
we studied the soliton solutions of two coupled KdV systems from the list of Drinfeld and
Sokolov [10]:

ut = 1

2
uxxx + auux + 3wx, (3)

wt = −wxxx − auwx, (4)

ut = −35

2
uxxx − 80auux + 5vx, (5)

vt = 25

2
vxxx − 171

4
uxxxxx − 20a(15uuxxx + 18uxuxx + 2uxv − 2uvx), (6)

with a an arbitary constant. We were interested in these systems for their link with some
integrable cases of the quartic Hénon–Heiles Hamiltonian [11, 12] as well as for the fact that
they can describe overtaking and head-on collisions of solitons. We showed that the system
(3)–(4) possess two different types of solitary waves according to the direction of propagation
(KdV or KK type), while the system (5)–(6) possess only KK-type solitary waves, but their
profiles depend on the direction of propagation.

In section 3, we establish that the two-soliton solution associated with the system (5)–(6)
may display triads of resonant solitons only when the solutions are built on a nonvanishing
background. We show that the three waves involved in the fusion or in the decay process have
the same profile, independently of their direction of propagation.

In section 4, we establish that the two-soliton of the system (3)–(4) built on a nonvanishing
background can also degenerate into a resonant triad involving two waves of the KdV type and
one of the KK type. Moreover, in this case, a new type of resonance relation occurs, extending
the one previously considered in [5].

2. The KK equation

In this section, we show that, for the KK equation, the condition for becoming zero or infinite
on the coupling factor of the soliton solution implies that this solution becomes singular at
finite distance and time.

The N-soliton solution of the KK equation

ut +

(
uxxxx + 40auuxx + 30au2

x +
320

3
a2u3

)
x

= 0 (7)

on a constant background c is given by

uN = 3

8a
∂2
x log fN + c. (8)
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The function fN has the form of a Grammian [13]

fN = det

[∫
ψiψj dx

]
1�i,j�N

, (9)

where ψi satisfies the third-order Lax pair

λψ = (
∂3
x + 8au∂x + 4aux

)
ψ, (10)

∂tψ = (
9λ∂2

x − (4auxx + 64a2u2)∂x + 4auxxx + 128a2uux + 48aλu
)
ψ, (11)

with u = c and λ = λi . Since a is a normalization constant, we further take a = 1 and obtain
the solitary wave

u1(k) = 3

8
∂2
x log(1 + 4eθ + A(k)e2θ ) + c, A(k) = k2 + 32c

k2 + 8c
,

(12)
θ = kx − ω(k)t + δ, ω(k) = k5 + 40ck3 + 320c2k.

The two-soliton solution is given by

u2(k1, k2) = 3
8∂2

x log f2(k1, k2) + c,

f2(k1, k2) = 1 + 4eθ1 + 4eθ2 + A1e2θ1 + A2e2θ2 + 8B12eθ1+θ2

+ 4A12eθ1+θ2(A1eθ1 + A2eθ2) + A1A2A
2
12 e2(θ1+θ2), (13)

Ai = A(ki), θi = θ(ki), A12 = (k1 − k2)
2
(
k2

1 − k1k2 + k2
2 + 24c

)
(k1 + k2)2

(
k2

1 + k1k2 + k2
2 + 24c

) , (14)

B12 = 2(k1 + k2)
4 − k2

1k
2
2 + 48c

(
k2

1 + k2
2

)
(k1 + k2)2

(
k2

1 + k1k2 + k2
2 + 24c

) . (15)

A two-soliton solution can degenerate into a resonant triad under the conditions

A12 = 0 or (A12)
−1 = 0, (16)

implying the resonance relation [5]

ω(k1) ∓ ω(k2) = ω(k1 ∓ k2). (17)

We first consider the case A12 = 0, which corresponds to

E ≡ k2
1 − k1k2 + k2

2 + 24c = 0 (18)

and possesses two solutions for k2

k2 ≡ k±
2 = k1

2
± 1

2

√
−3k2

1 − 96c, (19)

which are only real for c < 0 and k2
1 < −32c.

In order to have a regular solution, the conditions

A1 > 0, A2 > 0 and B12 > 0

must be satisfied. A1 > 0 for |k1| <
√−8c. For k2 = k+

2 , A2 > 0 for k1 < −√−8c, while
for k2 = k−

2 , A2 > 0 for k1 >
√−8c, such that it is impossible to have simultaneously

A12 = 0, A1 > 0, A2 > 0 and B12 > 0.

An analogous analysis for the case (A12)
−1 gives the same result. We therefore conclude that,

when the resonance relation (17) is satisfied, the two-soliton solution of KK becomes singular
at finite distance and time, and cannot describe the process of fusion or decay involving three
waves of type (2).
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3. The bKK equation

By elimination of the field v, the system (5)–(6) are equivalent with the soliton equation

ztt + 5

(
zxx,t + 8azxzt − zxxxxx − 40azxzxxx − 30a(zxx)

2 − 320

3
a2z3

x

)
x

= 0, (20)

called the bidirectional Kaup–Kupershmidt equation (bKK) in [14, 9].
In this section we show that, contrary to the KK equation, the bKK equation may possess

regular solutions describing the resonant interactions of three waves of type (2) with the same
bell-shaped profile.

Extending the results previously obtained in [9], we consider the N-soliton solution of
equation (20) on a nonvanishing constant background c

uN = (zN)x = 3

8a
∂2
x log fN + c, (21)

with fN written in the form of a Grammian as in (9), but where the functions ψi satisfy the
fifth-order Lax pair

λψ = (
∂5
x + 40

3 azx∂
3
x + 20azxx∂

2
x + 1

9

(
320a2z2

x + 140azxxx + 8azt

)
∂x

+ 1
9 (320a2zxzxx + 40azxxxx + 4azxt )

)
ψ, (22)

∂tψ = 5
(
∂3
x + 8azx∂x + 4azxx

)
ψ, (23)

with z = cx and λ ≡ λi .
If we apply the translation z = z̃ + cx on equation (20) and setting a = 1, we have that

the dispersion relation for the equation in z̃ is given by

F(ω, k) ≡ ω2 + 5(ωk3 + 8cωk − k6 − 40ck4 − 320c2k2) = 0, (24)

which is of second degree in ω. We therefore may define, as in [9], two different speeds:

v±(k) = 5

2
k2 + 20c ±

√
5

2
(3k2 + 40c),

with ‘+’, ‘−’ corresponding to the direction of propagation for c = 0.
The solitary waves are

u
(±)
1 (k) = 3

8∂2
x log(1 + 4eθ± + A(±)(k)e2θ±) + c, (25)

A(±)(k) = 3k2(5 ± √
5) + 320c

3k2(5 ∓ √
5) + 80c

, θ± = kx − kv±t + δ±. (26)

We stated in [9] that, for c = 0, the solitary wave propagating in the negative direction
possesses a unusual shape (see figure 1(b)), different from the profile of the bell-shaped wave
propagating in the positive direction (see figure 1(a)). For c �= 0, we here show that the profile
of the solitary wave u

(−)
1 may change, according to the value of k in function of c. In order to

determine if the wave u
(−)
1 may possess a profile as in figure 1(b), we look for the condition

on k for the existence of three real extrema. The result of this analysis is that u
(−)
1 possesses

three real extrema if c < 0, for

|k| > kmin (27)

kmin = 4

3

√
−3(5 +

√
5)c, (28)
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Figure 1. For c = 0, solitary waves of equation (20): (a) v+ > 0, (b) v− < 0.

if c > 0, for

|k| � 2

5

√
50

√
5c. (29)

At the level of the two-soliton solution, we have three possibilities:

u
(±±)
2 = 3

8∂2
x log f

(±±)
2 + c, (30)

f
(±±)
2 (k1, k2) = 1 + 4eθ1,± + 4eθ2,± + 8B

(±±)
12 eθ1,±+θ2,±

+ A
(±)
1 e2θ1,± + A

(±)
2 e2θ2,± + 4A

(±±)
12 eθ1,±+θ2,±

(
A

(±)
1 eθ1,± + A

(±)
2 eθ2,±

)
+ A

(±)
1 A

(±)
2

(
A

(±±)
12

)2
e2(θ1,±+θ2,±), A

(±)
i = A(±)(ki), (31)

B
(±±)
12 = 12

(
k4

1 + k4
2

) − 3(3 ∓ √
5)k2

1k
2
2 + 160c

(
k2

1 + k2
2

)
(
6
(
k2

1 + k2
2

)
+ 3(1 ∓ √

5)k1k2 + 80c
)
(k1 + k2)2

, (32)

A
(±±)
12 =

(
6
(
k2

1 + k2
2

) − 3(1 ∓ √
5)k1k2 + 80c

)
(k1 − k2)

2(
6
(
k2

1 + k2
2

)
+ 3(1 ∓ √

5)k1k2 + 80c
)
(k1 + k2)2

, (33)

u
(+−)
2 = 3

8∂2
x log f

(+−)
2 , (34)

f
(+−)
2 (k1, k2) = 1 + 4eθ1,+ + 4eθ2,− + 32B

(+−)
12 eθ1,++θ2,− + A

(+)
1 e2θ1,+

+ A
(−)
2 e2θ2,− + 4A

(+−)
12 eθ1,++θ2,−

(
A

(+)
1 eθ1,+ + A

(−)
2 eθ2,+

)
+ A

(+)
1 A

(−)
2

(
A

(+−)
12

)2
e2(θ1,++θ2,−), (35)

B
(+−)
12 = 27

(
k4

1 + k4
2

)
+ 9

√
5
(
k4

1 − k4
2

)
+ 9k2

1k
2
2 + 40c

(
15

(
k2

1 + k2
2

)
+ 3

√
5
(
k2

1 − k2
2

)
+ 80c

)
(
6k2

1 + 3(3 − √
5)(k1 + k2)k2 + 80c

)(
6k2

2 + 3(3 +
√

5)(k1 + k2)k1 + 80c
) ,

(36)

A
(+−)
12 =

(
6k2

1 − 3(3 − √
5)(k1 − k2)k2 + 80c

)(
6k2

2 + 3(3 +
√

5)(k1 − k2)k1 + 80c
)

(
6k2

1 + 3(3 − √
5)(k1 + k2)k2 + 80c

)(
6k2

2 + 3(3 +
√

5)(k1 + k2)k1 + 80c
) . (37)

Among those solutions, only u
(++)
2 can degenerate into a solution describing a resonant

interaction. Indeed, the function f2 has no zeros if Ai > 0, i = 1, 2 and B12 > 0 and we
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observe that the simultaneous conditions A
(−−)
12 = 0 (or (A

(−−)
12 )−1 = 0) and A

(−)
i > 0, i = 1, 2

or A
(+−)
12 = 0 (or (A

(+−)
12 )−1 = 0), A

(+)
1 > 0, A

(−)
2 > 0 cannot be realized.

We therefore study the behaviour of the two-soliton solution in the two degenerate cases
A

(++)
12 = 0 or

(
A

(++)
12

)−1 = 0. The first case implies the relation

ω+(k1) − ω+(k2) = ω−(k1 − k2). (38)

Although this relation is different from the usual resonant relation (17), we will show that it
corresponds to a resonant interaction involving three bell-shaped waves.

For c < 0, the equation

E− ≡ 6
(
k2

1 + k2
2

) − 3(1 −
√

5)k1k2 + 80c = 0, (39)

corresponds, in the real plane (k1, k2), to an ellipse. The two solutions of this equation are
given by

k±
2 = 1 − √

5

4
k1 ± 1

12

√
−18(5 +

√
5)k2

1 − 1920c, k2
1 � −16(5 − √

5)

3
c, (40)

and in this case expression (31) degenerates into

f
(++)
2 (k1, k2) = 1 + 4eθ1,+ + 4eθ2,+ + 8B

(++)
12 eθ1,++θ2,+ + A

(+)
1 e2θ1,+ + A

(+)
2 e2θ2,+ . (41)

The condition A
(+)
i > 0, i = 1, 2 implies the restriction on k1

2

3

√
−6(5 − 2

√
5)c < k1 <

kmin

2
, for k2 = k+

2 , (42)

− kmin

2
< k1 < −2

3

√
−6(5 − 2

√
5)c, for k2 = k−

2 , (43)

such that, as illustrated in figure 2, only parts of the ellipse can be considered. This guarantees
that B

(++)
12 > 0 and excludes the possibility, in the resonance process, of involving a wave

possessing the profile of figure 1(b).
We first consider the case k2 = k+

2 . The speeds which are involved in the resonance
relation (38) are

v+(k1) = 5 + 3
√

5

2
k2

1 + 20(1 +
√

5)c, (44)

v+
(
k+

2

) = −5 + 2
√

5

2
k2

1 − 5 +
√

5

24
k1

√
−18k2

1(5 +
√

5) − 1920c − 40

3
c, (45)

v−
(
k1 − k+

2

) =
√

5 − 5

4
k2

1 +

√
5

12
k1

√
−18k2

1(5 +
√

5) − 1920c − 40

3
c. (46)

Those speeds satisfy the inequality

v+(k1) < v+
(
k+

2

)
< v−

(
k1 − k+

2

)
, for k1 <

2

3

√
−15(3 −

√
5)c, (47)

v+
(
k+

2

)
< v+(k1) < v−

(
k1 − k+

2

)
, for k1 >

2

3

√
−15(3 +

√
5)c. (48)

In order to identify the resonant interaction, we are looking for the behaviour of (41) in three
particular frames
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(i) θ1,+ fixed, x = ξ + v+(k1)t ,

θ2,+ = k+
2 x − k+

2 v+
(
k+

2

)
t + δ2,+

= k+
2 ξ + k+

2

(
v+(k1) − v+

(
k+

2

))
t + δ2,+

→ −∞ for t → +∞ when k1 <
2

3

√
−15(3 −

√
5)c,

→ −∞ for t → −∞ when k1 >
2

3

√
−15(3 −

√
5)c,

therefore

f
(++)
2

(
k1, k

+
2

) → 1 + 4eθ1,+ + A
(+)
1 e2θ1,+ (49)

for t → +∞ when k1 < 2
3

√
−15(3 − √

5)c and for t → −∞ when 2
3

√
−15(3 − √

5)c.
(ii) θ2,+ fixed, x = ξ + v+(k

+
2 )t ,

θ1,+ = k1ξ + k1
(
v+

(
k+

2

) − v+(k1)
)
t + δ1,+

→ −∞ for t → −∞ when k1 <
2

3

√
−15(3 −

√
5)c

→ −∞ for t → +∞ when k1 >
2

3

√
−15(3 −

√
5)c

therefore

f
(++)
2

(
k1, k

+
2

) → 1 + 4eθ2,+ + A
(+)
2 e2θ2,+ (50)

for t → −∞ when k1 < 2
3

√
−15(3 − √

5)c and for t → +∞ when k1 >

2
3

√
−15(3 − √

5)c.

(iii) θ1,+ − θ2,+ fixed, x = ξ + v−
(
k1 − k+

2

)
t ,

θ1,+ = k1ξ + k1
(
v−

(
k1 − k+

2

) − v+(k1)
)
t + δ1,+ → +∞ for t → +∞,

θ2,+ = k+
2 ξ + k+

2

(
v−

(
k1 − k+

2

) − v+
(
k+

2

))
t + δ2,+ → +∞ for t → +∞,

therefore

f
(++)
2

(
k1, k

+
2

) → A
(+)
2 e2θ2,+

(
1 + 4eθ1,+−θ2,+ + A(+)

(
k1 − k+

2

)
e2(θ1,+−θ2,+)

)
for t → +∞,

(51)

where log 2B
(++)
12 is inserted in the phase.

Therefore, for k2 = k+
2 , the degenerate two-soliton solution describes the decay of a solitary

wave into two new waves (see figure 3(a)).
Let us now consider the case k2 = k−

2 . Because of the restriction on k1, we have that
k1 < 0, k−

2 < 0, such that the speeds satisfy the inequality

v+(k
−
2 ) < v+(k1) < v−(k1 − k−

2 ), for k1 < −2

3

√
−15(3 −

√
5)c, (52)

v+(k1) < v+(k
−
2 ) < v−(k1 − k−

2 ), for k1 > −2

3

√
−15(3 −

√
5)c. (53)
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Ai > 0, i = 1, 2 (c = −1).
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Figure 3. Resonant interaction of bKK solitons, giving rise to decay for k1 = 8/5 (a) and fusion
for k1 = −8/5 (b) of solitary waves (c = −1).

The behaviour of the solution in the three previous frames is

(i) θ1,+ fixed, x = ξ + v+(k1)t ,

θ2,+ = k−
2 ξ + k−

2 (v+(k1) − v+(k
−
2 ))t + δ2,+

→ −∞ for t → +∞ when k1 < −2

3

√
−15(3 −

√
5)c,

→ −∞ for t → −∞ when k1 > −2

3

√
−15(3 −

√
5)c,

therefore

f
(++)
2 (k1, k

−
2 ) → 1 + 4eθ1,+ + A

(+)
1 e2θ1,+ (54)

for t → +∞ when k1 < − 2
3

√
−15(3 − √

5)c and for t → −∞ when k1 >

− 2
3

√
−15(3 − √

5)c.
(ii) θ2,+ fixed, x = ξ + v+(k

−
2 )t ,

θ1,+ = k1ξ + k1(v+(k
−
2 ) − v+(k1))t + δ1,+

→ −∞ for t → −∞ when k1 < −2

3

√
−15(3 −

√
5)c

→ −∞ for t → +∞ when k1 > −2

3

√
−15(3 −

√
5)c,
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therefore

f
(++)
2 (k1, k

−
2 ) → 1 + 4eθ2,+ + A2e2θ2,+ (55)

for t → −∞ when k1 < − 2
3

√
−15(3 − √

5)c and for t → +∞ when k1 >

− 2
3

√
−15(3 − √

5)c.
(iii) θ1,+ − θ2,+ fixed, x = ξ + v−(k1 − k−

2 )t ,

θ1,+ = k1ξ + k1(v−(k1 − k−
2 ) − v+(k1))t + δ1,+ → +∞ for t → −∞,

θ2,+ = k−
2 ξ + k−

2 (v−(k1 − k−
2 ) − v+(k

−
2 ))t + δ2,+ → +∞ for t → −∞,

therefore

f
(++)
2 (k1, k

−
2 ) → A

(+)
2 e2θ2,+

(
1 + 4eθ1,+−θ2,+ + A(+)(k1 − k−

2 )e2(θ1,+−θ2,+)
)

for t → −∞. (56)

Therefore, for k2 = k−
2 , the degenerate two-soliton solution describes a process of fusion

of two solitary waves into a new wave (see figure 3(b)).
Let us now consider the implication of the condition

(
A

(++)
12

)−1 = 0), which yields the
resonance relation

ω+(k1) + ω+(k2) = ω−(k1 + k2). (57)

For c < 0, the equation

E+ ≡ 6
(
k2

1 + k2
2

)
+ 3(1 −

√
5)k1k2 + 80c = 0, (58)

also represents an ellipse in the real plane (k1, k2), and yields the two solutions for k2

k2 ≡ k±
2 =

√
5 − 1

4
k1 ± 1

12

√
−18(5 +

√
5)k2

1 − 1920c. (59)

The condition Ai > 0, i = 1, 2 implies the restriction on k1

− kmin

2
< k1 < −2

3

√
−6(5 − 2

√
5)c, for k2 = k+

2 , (60)

2

3

√
−6(5 − 2

√
5)c < k1 <

kmin

2
, for k2 = k−

2 . (61)

For k2 = k+
2 , the speeds which are involved in relation (38) are

v+(k1) = 5 + 3
√

5

2
k2

1 + 20(1 +
√

5)c, (62)

v+
(
k+

2

) = −5 + 2
√

5

2
k2

1 +
5 +

√
5

24
k1

√
−18(5 +

√
5)k2

1 − 1920c − 40

3
c, (63)

v−
(
k1 + k+

2

) =
√

5 − 5

4
−

√
5

12
k1

√
−18(5 +

√
5)k2

1 − 1920c − 40

3
c, (64)

and for k1 < 0, k2 = k+
2 > 0 we have the inequality

v+
(
k+

2

)
< v+(k1) < v−

(
k1 + k+

2

)
, for k1 < −2

3

√
−15(3 −

√
5)c, (65)

v+(k1) < v+
(
k+

2

)
< v) − (

k1 + k+
2

)
, for k1 > −2

3

√
−15(3 −

√
5)c. (66)

In order to obtain a nontrivial solution, the limit A12 → ∞ can be considered in three different
ways:
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(i) Choosing the phase δ1,+ = −log A
(++)
12 , expression (31) becomes

f
(++)
2 = 1 + 4eθ2,+ + 8

B
(++)
12

A
(++)
12

eθ1,++θ2,+ + A
(+)
2 e2θ2,+ + 4A

(+)
2 eθ1,++2θ2,+ + A

(+)
1 A

(+)
2 e2(θ1,++θ2,+),

(67)

and u
(++)
2 describes the fusion of two solitary waves into a new one.

(ii) Choosing the phase δ2,+ = − log A
(++)
12 , expression (31) becomes

f
(++)
1 = 1 + 4eθ1,+ + 8

B
(++)
12

A
(++)
12

eθ1,++θ2,+ + A
(+)
1 e2θ1,+ + 4A

(+)
1 e2θ1,++θ2,+ + A

(+)
1 A

(+)
2 e2(θ1,++θ2,+),

(68)

and leads to the inverse process of decay.
(iii) Choosing the phases δ1,+ = δ2,+ = − 1

2 log A
(++)
12 , expression (31) becomes

f
(++)
2 = 1 + 8

B
(++)
12

A
(++)
12

eθ1,++θ2,+ + A
(+)
1 A

(+)
2 e2(θ1,++θ2,+), (69)

and u
(++)
2 degenerates into a single-solitary wave with speed v−

(
k1 + k+

2

)
.

For k2 = k−
2 one can prove that the three previous kinds of processes may also occur.

In conclusion, we show that the degeneracy of the two-soliton solution on ellipses (39) and
(58) yields a regular solution only on some parts of those curves. In this case, the asymptotic
analysis shows that the resonant triad can describe a fusion or a decay process involving three
waves of the same bell-shaped profile as in figure 1(a).

4. The bSH equation

In this section, we analyse the two-soliton of the system (3)–(4) in order to obtain the conditions
for its degeneracy into a resonant triad involving bell-shaped waves of the KdV and KK type.

By elimination of w, the system (3)–(4) are equivalent to the sixth-order soliton equation

2ztt +
(
zxx,t − zxxxxx − 3a(zxzxx)x + 3

2a(zxx)
2 − 2

3a2z3
x

)
x

= 0, (70)

that we called bidirectional Satsuma–Hirota equation in [9].
Extending the results obtained in [9], we consider the N-soliton solutions of equation (70)

on a nonvanishing constant background c

uN = (zN)x = 6

a
∂2
x log fN + c. (71)

The function fN has, as for the KK equation, the form of a Grammian (9), but where the
functions ψi satisfy the fourth-order Lax pair

λψ =
(

∂4
x +

2

3
azx∂

2
x +

2

3
azxx∂x +

a

18

(
az2

x + 5zxxx + 2zt

))
ψ, (72)

∂tψ =
(

2∂3
x + azx∂x +

a

2
zxx

)
ψ, (73)

with z = cx, λ = λi .
For w = 0, the system (3)–(4) degenerates into the KdV equation. Therefore,

equation (70) possesses two types of solitary waves, respectively of forms (1) and (2). We
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further set a = 1. Applying the translation z = z̃ + cx on equation (70), we obtain the
following dispersion relation for the equation in z̃:

F(ω, k) ≡ 2ω2 + k3ω − k6 − 3ck4 − 2c2k2 = 0, (74)

which is of second degree in ω. As in [9], we obtain two types of solitary waves, depending
on the speed v = −ω/k

v+ = k2 + c, v− = − 1
2k2 − c,

where ‘+’ and ‘−’ correspond to the direction of propagation for c = 0.
The solitary wave propagating with the speed v− is of the KdV type:

u
(−)
1 (k) ≡ z

(−)
1,x (k) = 6∂2

x log(1 + eθ−) + c ≡ 6k2sech2 θ−
2

+ c,

θ− = kx + ω−t + δ− = kx + 1
2k3t + ckt + δ−, (75)

while the solitary wave propagating with speed v+ is of the KK type:

u
(+)
1 (k) ≡ z

(+)
1,x(k) = 6∂2

x log(1 + 2eθ+ + A(k)e2θ+) + c,
(76)

A(k) = 3k2 + 4c

6k2 + 4c
, θ+ = kx − k3t − ckt + δ+.

At the level of the two-soliton

u2(k1, k2) = 6∂2
x log f2(k1, k2) + c, (77)

the solution describing the interaction of two solitary waves of the same type, either with f2

proportional to a 2 × 2 Wronskian, as in the KdV case,

f
(−−)
2 (k1, k2) = 1 + eθ1,− + eθ2,− + A12eθ1,−+θ2,− , A12 = (k1 − k2)

2

(k1 + k2)2
, (78)

or with f2 proportional to a 2 × 2 Grammian, as in the KK case,

f
(++)
2 (k1, k2) = 1 + 2 eθ1,+ + 2 eθ2,+ + A1 e2θ1,+ + A2 e2θ2,+

+ 4
3
(
k4

1 + k4
2

)
+ 4c

(
k2

1 + k2
2

)
(k1 + k2)2

(
3k2

1 + 3k2
2 + 4c

)eθ1,++θ2,+ + A12eθ1,++θ2,+(A1 eθ1,+ + A2 eθ2,+)

+
A2

12

4
A1A2e2(θ1,++θ2,+), Ai = A(ki), θi,± = θ±(ki), (79)

cannot describe a resonant interaction because, for k1 �= k2, A12 > 0.
However, when f2 corresponds to the interaction of two solitary waves of different type:

f
(+−)
2 (k1, k2) = 1 + 2 eθ1,+ + eθ2,− + A1 e2θ1,+ + 2Ã12 eθ1,++θ2,− + A1Ã

2
12 e2θ1,++θ2,− , (80)

Ã12 = 6k2
1 − 6k1k2 + 3k2

2 + 4c

6k2
1 + 6k1k2 + 3k2

2 + 4c
, (81)

the condition Ã12 = 0 or (Ã12)
−1 = 0 can be satisfied for k1 �= k2. In the first case, for c < 0,

solving the equation

6k2
1 − 6k1k2 + 3k2

2 + 4c = 0, (82)

which implies the resonant relation

2ω+(k1) − ω−(k2) = ω−(2k1 − k2), (83)

one obtains two different values for k2:

k±
2 = −k1 ± 1

3

√
−9k2

1 − 12c, k2
1 < −4

3
c, (84)
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Figure 4. Decay of a KdV solitary wave (with speed v−(k+
2 )) into a KdV- and a KK-type solitary

waves: (a) k1 = 1/4 (v−(k+
2 ) > 0), (b) k1 = 2/5 (v−(k+

2 ) < 0) (c = −1).
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Figure 5. Fusion of a KdV- and a KK-type solitary waves into a KdV-type solitary wave (with
speed v−(k+

2 )): (a) k1 = 1/4 (v−(k+
2 ) > 0), (b) k1 = 2/5 (v−(k+

2 ) < 0) (c = −1).

with the restriction on k1 (A1 > 0, i = 1, 2)

k2
1 < − 2

3c. (85)

In this case, expression (80) degenerates into

f
(+−)
2 (k1, k2) = 1 + 2eθ1,+ + eθ2,− + A1e2θ1,+ . (86)

Therefore, performing an analysis similar to the bKK case, we obtain that in the case
k2 = k+

2 , the degenerate two-soliton solution describes the decay of a KdV-type solitary
wave (with speed v−(k+

2 )) into a KdV- and a KK-type solitary waves, propagating in opposite
directions respectively with a speed v−(k−

2 ) > 0 and v+(k1) < 0 (see figure 4), while for
k2 = k−

2 < 0, it describes the reverse process of fusion (see figure 5).
For (Ã12)

−1 = 0, corresponding to the ellipse

6k2
1 + 6k1k2 + 3k2

2 + 4c = 0, c < 0, (87)

similar processes of fusion and decay may occur, which we do not describe in detail, due to
the analogy with the previous case.

In conclusion, we show that the degeneracy of the two-soliton solution on curves (82) and
(87) implies unusual resonance relations such as (83) and that the regularity of the resulting
solution occurs only on parts of those ellipses. The asymptotic analysis shows that the resonant
triad involves in this case two waves of the KdV type together with a third wave of the KK
type.
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5. Conclusion

The SK and KK equations are two integrable PDEs of fifth order in space and first order
in time, which are in particular distinguishable by the analytical expression of their solitary
waves, respectively of types (1) and (2).

The two-soliton solution of SK, built on a nonvanishing constant background, is known,
when the resonance condition is satisfied, to degenerate into a regular solution describing a
resonant triad of sech2 waves. We here show that for KK, when the resonance condition is
satisfied, the two-soliton degenerates into a solution developing a singularity at finite space
and time.

The bSH equation (70) equivalent to the coupled system (3)–(4) describes overtaking and
head-on collisions of solitons, which involve bell-shaped waves of types (1) and (2) according
to their direction of propagation.

The soliton solutions of the bKK equation (20) equivalent to the system (5)–(6) involve
only solitary waves of type (2), but their profile depends on the direction of propagation (see
figure 1). For both equations, we here prove the existence of regular degenerate two-soliton
solutions describing a resonant triad of bell-shaped waves. For the bKK equation, the three
resonant waves of the KK type cannot possess the unusual profile of figure 1(b). For the bSH
equation, the resonant triad includes two waves of the KdV type and one of the KK type.

The KK and bKK equations (7) and (20) are two different reductions of the (2 + 1)-
dimensional CKP equation:

9zx1,x5 − 5zx3x3 +
(
zx1x1x1x1x1 + 15zx1zx1x1x1 + 15

(
zx1

)3

− 5zx1x1,x3 − 15zx1zx3 + 45
4

(
zx1x1

)2)
x1

= 0. (88)

For this last equation, a detailed analysis of its soliton solutions which can be expressed in
terms of Grammians [15] could provide an explanation to the appearance of resonant triad
only in the bKK case corresponding to zx5 = 0(t = 5x3, x = x1) and not in the KK case
corresponding to zx3 = 0 (t = 9x5, x = x1).

Moreover, it has been recently shown [16–19] that integrable equations in 2 + 1 dimensions
belonging to the KP hierarchy, whose N-soliton solutions can be expressed in terms of
Wronskians or Pfaffians, may describe a richer variety of exotic interactions than the (1 + 1)-
dimensional soliton equations.

For those two reasons, we intend in a future work to extend the present analysis to
the soliton equations in 2 + 1 dimensions of Grammian type which possess as reduction
equations (70) and (20) here considered.
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